
Abstract. For predicting solvent accessibility from the
sequence of amino acids in proteins, we use a logistic
function trained on a non-redundant protein database.
Using a principal component analysis, we ®nd that the
prediction can be considered, in a good approximation,
as a monofactorial problem: a crossed e�ect of the burial
propensity of amino acids and of their locations at
positions ¯anking the amino acid of interest. Comple-
mentary e�ects depend on the presence of certain amino
acids (mostly P, G and C) at given positions. We have
re®ned the predictive model (1) by adding supplemen-
tary input data, (2) by using a strategy of prediction
correction and (3) by adapting the decision rules
according to the amino acid type. We obtain a best
score of 77.6% correct prediction for a relative accessi-
bility of 9% . However, compared to trivial strategy only
based upon the frequencies of buried or exposed
residues, the gain is less than 4%.
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1 Introduction

Since its introduction by Lee and Richards [1], the
concept of solvent accessibility of protein amino acids
has been employed in various contexts such as the
identi®cation of residues implied in protein function [2±
4], targeting for site-directed mutagenesis [5] or the
assessment of the correctness of determined protein
structures [6±8]. The prediction of solvent accessibility of
proteins from their sequences can also be expected to lead
to structural prediction. Di�erent approaches to predict
solvent accessibility have been proposed: Holbrook and
co-workers [9] trained a neural network starting from a
set of 20 non-homologous protein structures, considering

sequence windows of 11 residues to predict a two-state
accessibility of the residues. Rost and Sander [10]
employed a similar approach and showed that starting
from multiple alignments of homologous sequences can
improve the prediction. Thompson and Goldstein [11]
used a strategy combining Bayesian statistics and mul-
tiple alignment within families of structural proteins
under the form of residue substitution classes.

A ®rst goal of the present study is to analyse what
determinants are likely to contribute to solvent accessi-
bility prediction as a starting point to re®ne the predic-
tion. We analyse the contributions provided by the
amino acids located at the di�erent positions in a win-
dow surrounding a given residue. To achieve this, we
used a logistic function as a model of prediction for bi-
nary categories (buried and exposed). This model uses a
reduced number of parameters compared to the previous
studies. We treat the estimated parameters of the logistic
function by a principal component analysis [12] for ex-
tracting the factors controlling the accessibility predic-
tion. We then assess the dependencies between these
factors and the usual physicochemical properties of
amino acids.

We then de®ne, from the previous results, di�erent
strategies to improve the prediction of the accessibility:

1. By adding complementary informations relative to
the sequence (such as the relative protein size and the
relative amino acid frequencies).

2. By introducing a ``prediction-correction'' process.
3. By using a thresholding adapted to each type of

amino acid.

Finally, several critical aspects are addressed: (1)
comparison of the performance of the prediction com-
pared to trivial approaches, and (2) distinction between
the prediction of buried or exposed residues.

2 Materials and methods

2.1 Database of protein structures

We have selected 342 non-homologous protein struc-
tures of a non-redundant database [13, 14], a subset of
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the Protein Data Bank [15]. The selection was restricted
to monomeric, single domain proteins since it has been
shown that the residues on the surface of protein
subunits or domains have di�erent amino acid distribu-
tions than residues exposed to solvent in monomeric
proteins [16]. A subset of 228 proteins was de®ned for
the training phase. The remaining 114 proteins were
used for the prediction assessing phase.

2.2 Residue solvent accessibility

Solvent accessibilities were calculated with the DSSP
program �17�. Buried residues (labelled bur) are de®ned as
those exhibiting a relative accessible surface less than a
user-de®ned fraction (S) of a standard state exposure;
accessible residues (labelled exp) correspond to non-
buried residues. We considered S values of 9% , 16% and
25% for comparison with the results of previous studies.

For evaluating the prediction accuracy, we use two
conventional measures. The coe�cient Q2 corresponds
to the percentage of correctly predicted residues in two
states (bur, exp). The Matthews coe�cient CM [18] cor-
responds to the Pearson correlation between the occur-
rences of the predicted and observed states.

2.3 A simple model for prediction: the logistic function

The method for predicting solvent accessibilities of
amino acid residues is based on the use of a logistic
function which is equivalent to a perceptron, i.e. a neural
network without hidden layer.

In our case, the basic input of the logistic function is a
boolean matrix X�Xij� where locations within the window
(or subsequence) of 2N � 1 residues centred around the
amino acid of interest are indexed by i �i � ÿN ; . . . ;�N�.

The amino acids types are indexed by j � j � 1; . . . ; 20�.
Xij is 1 if an amino acid j is in position i, else Xij is 0
(see Fig. 1). This information was conventionally used in
the previous studies. We have used a window size of 9
(i.e. N � 4), since this size of window was found optimal
(not shown).

The probability P �X� that a given residue is buried is
evaluated as:

P �X� � 1

��
1� exp

�
ÿ w0 ÿ

X
i

X
j

wijXij

��
where wij is the weight of the amino acid j located at
position i of the window. Weights wij are assumed
independent of the location of the central residue in the
sequence; hence the prediction is only dependent on the
¯anking sequence of the residue of interest. The matrix
of weights W�wij� is estimated by the maximum likeli-
hood method, using the S-Plus software [19].

The decision rule is the following: for each residue,
if its probability to be buried P�X� is higher than a
threshold Ps, the residue is predicted buried (i.e.
D � bur); otherwise it is predicted to be exposed (i.e.
D � exp). When the value Ps is ®xed, the probability of
errors R associated with the prediction of all residues of
the database is expressed as:

R � P �D � bur=E � exp� � P �E � exp�
� P�D � exp=E � bur� � P�E � bur�

The labels D and E denote the decision and the reality,
respectively. The optimal decision rule is for the Ps value
which minimizes the probability of error (Rmin). The
percentage of correctly predicted accessibilities Q2 is
equal to 1ÿ Rmin. The search for the optimal decision
rule is shown in Fig. 2.

The percentage of correct prediction Q2 is at least
equal to the largest proportions between buried P �bur�

Fig. 1. Prediction model of
accessibility. Local input: the
local input is a Boolean matrix
giving the positions of the
amino acids in a window of nine
residues for centred on the
residue for which the accessi-
bility is predicted. In this
example, we want to predict the
accessibility of the residue G.
Global input: the di�erent global
input data added to the local
input in the prediction model
are summarized (Sect. 2.3.1).
Logistic function: this block of
the ®gure indicates the number
of parameters taken into
account in the logistic function,
the matrix of weights estimated
by the logistic function and the
probability to be buried, P�X�,
given by the logistic function
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and exposed residues P �exp�: Q2 � max�P �exp�; P �bur��.
The simplest strategy, called ``strategy of order 0'',
consists of predicting all the residues as buried if
P �bur� > 0:5 or as exposed in the opposite case. Then,
the percentage of correct prediction Q2 is equal to
max�P�bur�; P�exp��.

2.3.1 Additional input

The input Boolean matrix was supplemented by:

1. The length of the protein sequence, since the percent-
age of buried residues is an increasing function of the
length. For example, for a relative accessibility equal
to 25% , the proportion of buried residues grows
from 25% to 37% for protein lengths less than 190
residues and is slightly increasing (proportion close to
48% for protein lengths more than 190 residues). The
relative length of the protein was introduced as:
ln�Lprot=Lmean�, where Lprot and Lmean are respectively
the length of the protein and the mean length of
proteins in the database.

2. The distance to the C- and N-terminal ends of the
sequence. This parameter has been considered by
di�erent authors [9, 10]. In the present study, it was
expressed as: dk�1ÿ dk� with dk � �k ÿ 1�=�Lprot ÿ 1�
where k is the residue location in the sequence.

3. The relative frequencies of the 20 amino acids in a
given protein compared to those issued from the
whole database. It was expressed as: ln�F j

prot=F j
base�

where F j
prot and F j

base are respectively the frequency of
the amino acid j in the protein and its mean
frequency in the database.

2.3.2 ``Prediction-correction'' strategy

We have considered a ``prediction-correction'' learning.
In this case, two logistic functions are used, and the
probabilities estimated by the ®rst logistic function are
reintroduced as complementary inputs of a second

logistic function. This leads to eight supplementary
parameters corresponding to the di�erences between the
estimated burial probabilities of residues of the window
and of the central position.

Using such a procedure could be relevant since the
estimated accessibilities of the residues neighbouring the
residue of interest should interfere with the estimation of
the accessibility of this central residue.

2.3.3 ``Adapted'' thresholding strategy

As some amino acids have a high propensity to be
exposed or buried, the accessibility previously de®ned
must be modulated by the amino acid type. Thus, we
have considered the opportunity of using a thresholding
adapted to each amino acid type. In such a case, 20
threshold values Ps�i�, i � 1; . . . ; 20, must be de®ned
instead of the same value for the whole of the amino
acids.

The thresholds are obtained by minimization of the
probability of error for every amino acid type. The
minimal global probability of error is the weighted mean
of the individual probabilities of error:

Rmin �
X20
j�1

qjR
j
min

where qj and Rj
min are respectively the frequency of the

amino acid type j and the corresponding minimal
probability of error.

The proportion of residues correctly predicted Q2 is
1ÿ Rmin. The percentage Q2 is higher or equal to the
mean of the probabilities of error computed for the
strategies of order 0, i.e.

Q2 �
X20
j�1

qj max�Pj�bur�; Pj�exp��

where Pj�exp� � 1ÿ Pj�bur� and where Pj�exp� and
Pj�bur� are the proportions of the exposed and buried
amino acids j, respectively. The simple strategy of order

Fig. 2. Determination of the
optimal cuto� Ps associated
with a minimum probability of
error Rmin. The values of the
burial probability P�X� are cal-
culated by the logistic model for
a set of residues. From the set
of probabilities, we build two
distributions of P�X� according
the truly residue state
(E � buried or E � exposed).
For each value of cuto� Ps of
the decision rule, the probabil-
ity of error is computed and the
optimal value of Ps minimizing
the probability of error is
deduced
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1 consists of predicting a residue buried when this amino
acid is more often buried than exposed in the database,
and reciprocally. In this case, Q2 takes the minimum
value of the previous formula.

2.4 A mean for extracting the most informative factors
in the prediction: the principal components analysis

The simplest model of accessibility prediction corres-
ponds to the independence between the weights attrib-
uted to amino acids and those attributed to the positions
within the window. In this case, the matrix of weights
W issued from the logistic model is deduced from a
multiplicative e�ect of amino acid type and of window
position and can be written as W � A1 � tF1, where
A1�A1

i � and F1�F 1
j � are respectively the vector of weights

associated with each position of the window and the
contributions of the amino acid type to the burial. tF
denotes the transposed vector of F. Such a matrix is of
rank 1.

As the highest rank of W is the lower dimension of
the matrix, i.e. 9, the general model which decomposes
linearly the matrix W consists of adding 9 matrices of

rank 1. So, W �P9
k�1 A

k � tFk or wij �
P9

k�1 Ak
i F k

j . If we

want the factors F1, F2; . . . ;F9 to bring a decreasing
contribution in this order, the solution is to perform a
principal component analysis where the factors Fk are
the principal components and the weights Ak are the
loadings. Each principal component, Fk takes into ac-
count a part of the variability of W. Each variability is
interpreted as the contribution of this component to the
burial prediction.

The relationships between principal components and
physicochemical properties of amino acids are assessed
by correlations. We have considered the hydrophobicity
coe�cient [20], the propensity to be located in a coil, in a
strand or in a helix [21], the ¯exibility [22], the accessi-
bility coe�cient [23], the residue burial [24], the acces-
sible surface [25], the size [26], the polarity [26], the
charge (encoded in three classes: negatively charged by
ÿ1, positively charged by �1 and the others by 0), the
radius (radius of a sphere including at better a set of
conformations of the side chain) and the ``propensity to
be in a buried contact''.

We obtain this last property by determining contacts
between side-chains in the bank of protein structures,
and by counting it in two di�erent matrices of occur-
rence (dimension 20� 20): one matrix with contacts
between two buried residues and one matrix with the
other contacts. We have ®tted within S-Plus software
[27] a log-linear model [28] in order to estimate the joint
e�ect between the amino acid type and its accessibility,
called the ``propensity to be in a buried contact''.

3 Results and discussion

The main aspects tackled in the paper are:

1. To extract and interpret the factors controlling the
burial of the central residue, associated with the type

of amino acids and the locations in the window of
analysis.

2. To assess the gains of the prediction accuracy
provided by the di�erent re®nements of the initial
model, and to discuss the improvements relative to
the trivial models of order 0 or 1. The results will be
given for three relative solvent accessibility cuto�s of
9%, 16% and 25%.

3.1 The solvent accessibility prediction appears to
be mainly a mono factorial problem

The logistic function was trained using the basic Boolean
input information (see Methods). The matrix of weights
W of the logistic function was then decomposed by a
principal component analysis. For a relative solvent
accessibility of 25%, the ®rst principal component
explains the major part of the variability (89.1%)
(respectively 89.5% and 90.5% for 16% and 9%) and
the ®ve ®rst principal components 98.6% (98.2 for 16%
and 9%). The components 2, 3, 4 and 5 correspond to
3.93%, 2.64%, 1.67% and 1.21% of the variability,
respectively. Since the major part of the variability is
explained by only one component (W ' A1 � tF1), the
model is clearly over-parametrized. This can be con-
®rmed by performing the learning test procedure for
restricted models. The logistic function based only on
the ®rst principal component gives 67.7% correct
predictions for a relative solvent accessibility of 25%
(respectively 70.5% and 75.2% for 16% and 9%), and
68.6% with the ®rst ®ve components (respectively 70.9%
and 75.2%), values compared with 68.7% for the
complete model (model with nine principal components)
(respectively 71.2% and 75.8%). Thus for a model
reduced from 180 to 45 parameters the accuracy loss is
0.1% (respectively 0.3% and 0.6%), and the loss is only
1% for the monofactorial model (9 parameters) (respec-
tively 0.7% and 0.6%).

3.2 New indexes of amino acid burial

We have checked the correlations between these princi-
pal components and common physicochemical proper-
ties. No signi®cant correlations could be derived for the
principal components 2±5. Only 5 among the 13 amino
acids' properties appear correlated to the ®rst compo-
nent. Two are negatively correlated: the polarity with
a correlation of ÿ0:737 � p < 2� 10ÿ4� and the accessi-
bility coe�cient with a correlation of ÿ0:684
� p < 9� 10ÿ4�. This is not surprising since these are
measures of how residues might be exposed. Three are
positively correlated: the tendency to be located in a b
strand with a correlation of 0:789 � p < 10ÿ4�, the
hydrophobicity with a correlation of 0:775 � p < 10ÿ4�
and the ``tendency to be in a buried contact'' with a
correlation of 0:872 � p < 10ÿ8�. This last property is the
only one that exhibits a signi®cant partial correlation
[29] (i.e. the correlation with the ®rst component is
maintained when the other properties are ®xed). This
implies that this property explains some part of the
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variability which is not taken into account by the other
properties.

Thus, coe�cients associated with component 1 and
the ``tendency to be in a buried contact'' (Table 1) can be
considered as burial indexes. Even if the hydrophobic
and hydrophilic tendencies are conserved, some di�er-
ences can be noted between these scales and the scales of
accessibility [23] and of burial [24]. The major di�erences
concern tryptophan (W) and tyrosine (Y), which are
more buried in our two indexes, and cysteine (C), which
is less buried.

3.3 The e�ect of the neighbours of a residue
on its burial prediction

3.3.1 Equivalent contributions of the central residue
and its neighbours

Tables 1 and 2 list for a relative accessibility cuto� of
25% the three ®rst principal components and the
corresponding loadings. The contribution of an amino
acid i in the position j is obtained by combining the
results of Tables 1 and 2: the burial (or the accessibility)
of the central residue is favoured when the product of
the coe�cients of i in Table 1 and of j in Table 2 is
positive (or negative) for a given order k �k � 1; 2; 3� in
the tables.

For the component 1, all residues except alanine (A)
have a non-negligible e�ect. The loadings associated
with the ®rst component show that the central residue
has the major e�ect, which is equivalent in magnitude to
the e�ect of all other residues of the window (see
Table 2). The hydrophobic and non-polar residues (or

polar and charged) in positions �1, �3 and �4 favour
the burial (or the accessibility) of the central residue.
One notes that such positions are compatible with what
one could expect for an a-helix: when a residue is located
on the buried side of an a-helix, then the residues located
at these positions are not accessible, and conversely.
Similar pro®les were derived for 16% and 9% (not
shown). However, some e�ects related to particular
residues are accentuated: when the relative accessibility
cuto�s decrease, the burial is more favoured by the
presence of an isoleucine (I) (its coe�cient is 1.137, 1.275
and 1.38 respectively for the relative accessibility cuto�s
of 25%, 16% and 9%) and inversely for lysine (K)
(ÿ1:839; ÿ2:119 and ÿ2:346). Also, the contributions to
the accessibility of proline (P) and threonine (T) (coef-
®cients are respectively ÿ0:804; ÿ0:641 and ÿ0:589 for
P and ÿ0:442; ÿ0:4 and ÿ0:232 for T) are lowered.

3.3.2 The rectifying e�ects of accessibility prediction
are dependent on certain amino acids located
at ®xed positions relative to the central residue

Components 2 and 3 correspond to rectifying e�ects
compared to component 1, since the e�ect of the central
position appears much lower than those of the neigh-
bouring positions (Table 2), and a smaller subset of
amino acid types is involved compared to component 1
(respectively 11 and 10 amino acid types) (Table 1).

For the second component, glycine (G) and proline
(P) have an e�ect roughly three times stronger than the
other amino acids, and it is mostly the positions +1 and
ÿ1 that exhibit strong e�ects. Glycine (or proline) at
position ÿ1 (or +1) favours the burial (or the accessi-
bility) of the central residue. Tryptophan (W), histidine
(H) or asparagine (N) contribute to a lesser extent.

For the third principal component, the e�ect of the
central position is unfavourable for burial. This is
compensated by the e�ects associated with the other
positions. Mostly, cysteines (C) contribute to this com-
ponent. They show a tendency to be buried in the central
position, while at other positions they favour the
accessibility of the central residue.

Such results are consistent with the analysis per-
formed by Holbrook and co-workers. In their study, the
authors examined the weights matrix W and observed
that the primary factor governing exposure of the

Table 1. Contributions of amino acids on the burial of the central
residuea

Amino acid Comp 1 Comp 2 Comp 3 Ind

F 1.440 )0.010 )0.117 0.405
W 1.245 0.230 0.021 0.322
L 1.187 )0.027 0.168 0.412
I 1.137 0.071 0.210 0.451
M 0.985 )0.049 0.058 0.372
C 0.983 )0.186 )0.574 0.307
Y 0.924 0.008 0.055 0.131
V 0.854 0.023 0.032 0.336
H 0.152 )0.208 0.162 0.049
A 0.019 0.117 )0.080 0.215
G )0.350 )0.492 )0.006 0.223
T )0.442 0.109 0.124 )0.083
S )0.538 0.042 )0.039 )0.041
R )0.730 0.100 0.232 )0.478
N )0.803 )0.247 0.124 )0.274
P )0.804 0.587 )0.139 )0.151
Q )0.984 0.152 )0.079 )0.416
D )1.136 )0.104 0.001 )0.342
E )1.299 )0.042 )0.114 )0.511
K )1.839 )0.074 )0.040 )0.916
aOnly the three ®rst principal components Comp 1, Comp 2 and
Comp 3 (Sect. 2.4) and the index of the tendency to be in a buried
contact (Ind) (Sect. 2.4) are given. Residues with positive (or ne-
gative) coe�cients favour the burial (or the accessibility) of the
central residue

Table 2. E�ects of the positions of the ¯anking sequence of the
central residue on its buriala

Position Comp 1 Comp 2 Comp 3

)4 0.145 )0.129 0.150
)3 0.133 )0.220 0.270
)2 0.060 0.046 0.018
)1 0.167 )0.513 0.225
0 0.936 0.119 )0.295

+1 0.075 0.766 0.380
+2 0.092 )0.012 0.147
+3 0.162 )0.258 0.347
+4 0.118 0.041 0.692

a Positions with positive (or negative) coe�cients favour the burial
(or the accessibility) of the central residue
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residues V, W, M and E is the identity of the central
residue itself. For residues P and G, they observed that
the ¯anking sequence is more in¯uential. They also
observed that hydrophobic residues at position ÿ3;ÿ2
and +2, +3 favour the burial. In the present study, we
have carried out a quantitative analysis of the contri-
butions of the amino acid types associated with their
positions in the window. The present results show some
di�erences in the hydrophobic residues having the
highest e�ect on the accessibility in the central position
(i.e. F, W, L and I). We observe too a rectifying role of
cysteine (C) which attenuates the e�ect of the central
residue.

3.4 Re®nements of the prediction

3.4.1 A maximum gain of 2% in the prediction
is obtained with the default strategy compared
to the trivial model

Table 3 gives the percentages of correct prediction Q2

and the Matthews coe�cients CM for each model. For a
relative accessibility of 25%, the simple strategy of order
0, predicting all the residues exposed, gives a correct
prediction of 51.9%, equal to the frequency of the
exposed residues in the database and a null correlation
coe�cient since the whole of the buried residues are
incorrectly predicted. The simple strategy of order 1,
predicting the residue buried (or exposed) when it is
more often buried than exposed (or exposed than
buried) in the database, gives a correct prediction of
66.8% and a CM of 0.336. The results obtained with a
such strategy are rather good because a few amino acids
(A, G, H, S and T) have no particular tendency to be
buried or exposed while the 15 other amino acids show
stronger tendencies for accessibility or burial (more than
60% ). Compared to these results, the model with the
nine principal components gave a prediction accuracy of
68.7% with a CM of 0.372, i.e. a gain of only 2%
compared to the strategy of order 1. The better CM value
re¯ects the fact that the percentage of buried residues
correctly predicted increases from 56.3% to 63.1%

between the strategy of order 1 and the model with the
nine principal components, while the percentage of
exposed residues correctly predicted only decreases from
76.5% to 73.9%.

Similarly, the gains observed for relative accessibili-
ties of 16% and 9% are of 1% and 1.5%, respectively.
One remarks that the percentage of correct predictions
increases when the relative accessibility cuto� decreases,
and conversely for the correlation coe�cient. Conse-
quently, the prediction for the buried residues is less and
less correct, however, as the frequency of buried residues
in the database decreases, Q2, increases.

3.4.2 Further re®nements contribute
to a maximum gain of 2.1% in the prediction

The addition of information relative to the protein
(length and composition in amino acids of the protein,
distance to the C-and N-terminal ends) leads to a gain of
0.8% for Q2 and a CM of 0.386, for relative accessibility
of 25%. Using the prediction-correction strategy, the
further gain in the percentage of correct prediction is
0.4% compared to the previous model and CM increases
to 0.396. Finally, using a decision rule dependent on the
type of the central amino acid, the gain in the percentage
of correct prediction is 0.8% and CM increases to 0.417.
For relative accessibilities of 16% and 9%, similar
enhancements are obtained, with ®nal gains of 2.1% and
1.7%, respectively.

Each of the additional re®nements to the model with
nine principal components allows a small gain. The ef-
fect of the prediction correction is slight. The best en-
hancements come from using a thresholding dependent
on the type of amino acid. As shown in Table 4, the
prediction is better for some amino acids. In fact, hy-
drophobic and charged (D, E, K) amino acids are the
best predicted, with a percentage of correct prediction
higher than 70%. The worse predictions are obtained for
G, H, P, S and T, with a prediction accuracy lower than
65%. However, compared to the strategy of order 1, the
prediction is much increased for some amino acids such
as A, G, H, S, T and Y (gain more than 5%) and slightly
for the other ones.

Table 3. Assessment of predic-
tion accuracy for the di�erent
models

a The di�erent models are
described in the text (Sect. 2.3)
b Percentage of correct predic-
tion evaluated for di�erent
relative solvent accessibility
cuto�s S
c Correlation coe�cient of
Matthews [18]

S Modela Qb
2 (%) Cc

M

25% Strategy of order 0 51.9 0
Strategy of order 1 66.8 0.336
Nine principal components 68.7 0.372
+ length of the protein + composition in amino acid 69.5 0.386
+ prediction correction 69.9 0.396
+ thresholding by amino acid 70.7 0.417

16% Strategy of order 0 63.7 0
Strategy of order 1 70.2 0.331
Nine principal components 71.2 0.355
+ length of the protein + composition in amino acid 71.7 0.372
+ prediction correction 71.7 0.369
+ thresholding by amino acid 73.3 0.386

9% Strategy of order 0 73.8 0
Strategy of order 1 74.3 0.184
Nine principal components 75.8 0.262
+ length of the protein + composition in amino acid 76.4 0.302
+ prediction correction 76.5 0.313
+ thresholding by amino acid 77.6 0.339
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Although at 25% the re®nements lead to a gain of
only 1.6% in the percentage of correct prediction, the
largest improvement lies in a better prediction of the
exposed residues. In fact, the percentage of exposed
residues correctly predicted increases from 73.9% to
76.4%, while that of buried residues correctly predicted
increases from 63.1% to 64:4%.

These results, obtained with a simple model (one lo-
gistic function), are similar to those of previous studies.
Compared to the results without multiple sequence
alignment given in previous works, the prediction of the
accessibility is slightly improved. For a relative accessi-
bility cuto� of 20% the results are equivalent to the
previous works: Holbrook et al. [9] obtained a Q2 of
72% and Thompson and Goldstein [11] a Q2 of 72.3%.
Our values obtained for 25% and 16% (Q2 of 70.7% and
73.3%) bracket these values. For 16% and 9%, Rost
and Sander [10] obtained Q2 values of 71.1% and 72.8%,
respectively, while we obtain 73.3% and 77.6%. These
improvements can be explained either by our re®ne-
ments or by the use of a di�erent database.

4 Conclusion and perspectives

As explained previously, the advantage of the method is
to have an explicit model allowing the determination of
the amino acids and of their locations in the ¯anking
sequence which favour the accessibility of a given
residue. We show that the problem of accessibility
prediction is mainly monofactorial, since 89% of the
variability can be explained by the crossed e�ect of one
factor measuring the amino acids' propensity to be
accessible to the solvent and of one factor associated
with their locations in the window. However, certain
amino acids in the ¯anking sequence of a given residue
rectify their accessibility prediction. Moreover, we show
that the ®rst principal component is highly correlated
with some amino acids properties and we give two new
indexes: an index of the solvent accessibility and an

index of the tendency to establish a buried contact, these
two indexes being highly correlated. The prediction
accuracy after di�erent model re®nements is improved: a
maximum gain of 2.1% for three thresholds of relative
solvent accessibility (9%, 16% and 25%).

Further work will be carried out to study ®rst the
improvement of the prediction by taking account of
multiple alignment and, second, the possible e�ects of
order 2 related to the co-occurrences of amino acids in
the ¯anking sequence of a given residue.
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